Коэффициент полезного действия трансформатора

 

Преобразование электрической энергии в трансформаторе сопровождается потерями.

Коэффициент полезного действия трансформатора (к.п.д.) — это отношение отдаваемой активной мощности к потребляемой:

η = (P2 / P1) • 100 %,

где Р1 — мощность, потребляемая из сети, Р2 — мощность, отдаваемая нагрузке. Таким образом, для практического определения к.п.д. трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку. Тогда cos ф ≈ 1 (поток рассеяния невелик), и мощность Р2 может быть вычислена по показаниям амперметра и вольтметра, включенных во вторичную цепь. Такой метод определения к.п.д. называется методом непосредственных измерений. Он весьма прост, но имеет два существенных недостатка: малую точность и неэкономичность. Первый из них обусловлен тем, что к.п.д. промышленных трансформаторов очень высок (до 99%), поэтому мощности Р2 и Р1 иногда мало отличаются по величине.

В этом случае незначительные ошибки в показаниях приборов приведут к большим ошибкам в значении к.п.д. Неэкономичность этого способа связана с большим расходом электроэнергии за время испытания, так как трансформатор приходится нагружать до номинальной мощности. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим к.п.д. (например, в учебной практике).

На практике к.п.д. трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь.

При этом исходят из того, что к.п.д. трансформатора может быть представлен в следующем виде:

η = P2 / (P2 + Pст + Pм),

где Рст — потери в стали (в сердечнике), а Рм — потери в меди (в обмотках). Потери в стали и потери в меди измеряют в опытах холостого хода и короткого замыкания соответственно.

В опыте холостого хода, в котором на первичную обмотку подают номинальное напряжение, а вторичную обмотку оставляют разомкнутой, определяют потери в стали, т. е. потери на гистерезис и вихревые токи. Так как при номинальном напряжении на первичной обмотке магнитный поток практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали для него являются постоянной величиной. Таким образом, можно считать, что в режиме холостого хода энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в цепь первичной обмотки. При этом, правда, не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток невелик, и потери от него также невелики. В этом опыте определяется также коэффициент трансформации k и ток холостого хода I01.

Если вторичную обмотку трансформатора замкнуть накоротко, а на первичную обмотку подать такое пониженное напряжение, при котором токи в обмотках не превышают номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора. В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания. Следовательно, ваттметр, включенный в цепь первичной обмотки трансформатора в этом опыте, покажет мощность, соответствующую потерям в меди (Рм).

Explore More

Требования к работникам, допускаемым к выполнению работ в электроустановках

Требования к работникам, допускаемым к выполнению работ в электроустановках Содержание: Работники обязаны проходить обучение безопасным методам и приемам выполнения работ в электроустановках Работники, занятые на тяжелых работах и на работах

Малые и микро ГЭС

Малые и микро ГЭС Одно из наиболее экономичных направлений развития возобновляемой энергетики в России — сооружение на небольших водотоках малых (МГЭС) и микроГЭС. Технический потенциал малой гидроэнергетики составляет более 360

Автоматика ликвидации асинхронного режима

Признаки асинхронного режима. В нормальном режиме генераторы, включенные на параллельную работу, работают синхронно. Синхронный режим характеризуется тем, что ЭДС всех генераторов имеют одинаковую частоту и, следовательно, их векторы вращаются с